粗略地说,大模型训练有四个主要阶段:预训练、有监督微调、奖励建模、强化学习。

预训练消耗的时间占据了整个训练pipeline的99%,其他三个阶段是微调阶段,更多地遵循少量 GPU 和数小时或数天的路线。预训练对于算力和数据的要求非常高,对于普通开发者来说基本上不用考虑了。

对于开发者来说,如果你有几块GPU显卡,那么就可以尝试微调了。不过在微调之前,我们要弄明白为什么要微调,大模型为什么不能直接用?

一、为什么要微调?

大语言模型的预训练的目标很简单:文字接龙,通过前面的词语预测下一个字也就是预测token序列的下一个token。

预训练基于大规模无监督数据集训练,得到的大语言模型可以保存很多知识,但是可能无法充分利用这些知识来回答问题。

我的理解是预训练就是一个班上学习很好的学霸,不过只会死记硬背,脑袋里记忆了很多知识,但是不会灵活应用这些知识。一般预训练的数据格式如下所示:

[     {"text": "中国的首都是北京"},     {"text": "初学者如何对大模型进行微调"}   ]   


如果将“中国的首都是”输入大模型,大模型做文字接龙,可以很轻松的补全“北京”作为回答。但是如果问题的形式是“中国的首都是哪个城市?”这种疑问句形式的时候,虽然只进行了预训练的大模型大概率也能回答这个简单问题,比如采用Few-shot prompt等方法。

但这种形式的问题如果内容更复杂一些,大模型可能无法很好的作答(尽管预训练语料中可能包含了问题的答案)。这时我们就需要指令微调来挖掘大语言模型的潜力。让大模型不仅仅满足于文字接龙,而是要真正具备逻辑推理、文案总结等能力。

一般来说我们可以在modelscope中搜索最新的大模型,以Llama系列为例子。其中

  • Meta-Llama-3-8B不包含Instruct关键词,说明它只有预训练,未经过指令微调。

  • Meta-Llama-3-8B-Instruct包含Instruct关键词,经过预训练、指令微调。

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

二、初学者如何微调?

对于初学者来说,我们不需要指令微调来挖掘大语言模型的潜力,虽然这个时候的指令微调相比预训练资源消耗小很多,但是对于初学者来说还是很困难的,在微调过程中会碰到灾难性遗忘、复读机等问题。

我建议初学者做微调是在指令微调模型的基础加入特定领域的数据,比如法律文档、医疗诊断等领域,模型需要调整其参数以更好地理解和执行这些特定任务的要求,微调允许大语言模型在特定任务的数据集上进一步学习,从而提高其在该领域的准确性和表现。

比如我在Qwen1.5-7B-Chat的基础上(Qwen1.5-7B-Chat是一个预训练、指令微调后的大模型),准备训练数据集45366条,测试数据集5032条,再微调大模型来实现商品评论情感分析,准确率高达91.70 %,具体实现方法如下:

微调大模型来实现商品评论情感分析

学习微调最好的办法就是自己亲身实践一遍。在去年的时候微调大模型还是一件比较困难的事情。微调工具链不太成熟,碰到了问题只能一个接一个去提issue,费时费力效果还一般。

不过随着大厂在大模型领域真金白银的投入,适合大模型微调的工具链组件快速发展,从初学者入门的角度出发。我推荐使用LLaMA-Factory统一微调框架,它能够支持数百种大模型的微调,并且集成了大量训练加速算法,比很多大模型repo主页训练方法还要快。下面我们来看一看如何使用它。

1.依赖下载
git clone https://github.com/hiyouga/LLaMA-Factory.git   conda create -n llama_factory python=3.10   conda activate llama_factory   cd LLaMA-Factory   pip install -e .[metrics]   


如果依赖有问题,可以。

2.大模型下载

这里以Baichuan2-13B-Chat为例。

#模型下载   from modelscope import snapshot_download   model_dir = snapshot_download('baichuan-inc/Baichuan2-13B-Chat')   


默认模型会下载到~/.cache/modelscope/hub中,如果需要修改下载目录,可以手动指定环境变量:MODELSCOPE_CACHE,modelscope会将模型和数据集下载到该环境变量指定的目录中

比如更改默认位置:

export MODELSCOPE_CACHE=/home/test/models   


3.数据集构建

(1)使用开源数据集

llama_factory中的 data文件夹提供了大量整理好的开源数据集

(2)构建自己的数据集 比如我我按照alpaca 格式准备数据集,包括 instruction, input, output,history 4条内容,其中instruction、 input 为输入,output 为输出标注,数据文件存储格式一般为json。

[     {       "instruction": "用户指令(必填)",       "input": "用户输入(选填)",       "output": "模型回答(必填)",       "system": "系统提示词(选填)",       "history": [         ["第一轮指令(选填)", "第一轮回答(选填)"],         ["第二轮指令(选填)", "第二轮回答(选填)"]       ]     }   ]   


例子如下:

[     {       "instruction": "判断该文章是观点类还是新闻类",       "input": "报纸报道称政府已宣布决定在该地区部署更多武装部队。",       "output": "该文章被归类为新闻类。"     },     {       "instruction": "电子邮件信息的三个最重要的组成部分是什么?",       "input": "",       "output": "电子邮件信息的三个最重要的组成部分是主题行、邮件正文和签名。"     },     ...   ]      


(3)引入自己的数据集

构建自己的数据集后,需更新 data/dataset_info.json 文件,并将数据集放置data文件夹

比如我构建了一个数据集test.json,需更新data/dataset_info.json 文件,并将test.json放置于data文件夹

{     "test": {       "file_name": "test.json",     },     "alpaca_en_demo": {       "file_name": "alpaca_en_demo.json"     },     ...    }   


4.微调

建议初学者采用web可视化页面微调,启动命令如下:

CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui   


其中:CUDA_VISIBLE_DEVICES 指定使用哪块显卡

启动后,微调就更简单了。llamafactory集成了多种微调算法,比如

  • Lora

  • QLora

  • LoRA+

  • Mixture-of-Depths

  • GaLore

等等微调算法,在这里我不想深究它们的具体原理。我建议初学者首先使用Lora微调的方式,只需配置3个参数即可开始微调

5.推理

由于采用的是Lora微调,我们需要将原有大模型的权重与自己训练出来的权重合并。

llamafactory也内置了推理模块,只需调1个参数,即可推理,如下图所示:

下面这张图,是我基于llamafactory做的商品评论情感预测,其中1代表好评,0代表差评。可以看到大模型输出1,代表它认为这条评论是好评。

三、最后

现在大模型微调的门槛越来越低,市场上有大量开源微调框架。只要你会部署、有机器就能出个结果,赶紧动手玩起来吧!

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

Logo

更多推荐