1 函数

1.1 dir()函数

函数功能:打开包。
在pycharm 的python console中输入:

In[1]: import torch
In[2]: dir(torch)
Out[2]: ......
In[3]: dir(torch.cuda)
Out[3]: ......
In[4]: dir(torch.cuda.is_available)
Out[4]: 
	['__annotations__',
	 '__call__',
	 '__class__',
	 '__closure__',
	 '__code__',
	 '__defaults__',
	 '__delattr__',
	 '__dict__',
	 '__dir__',
	 '__doc__',
	 '__eq__',
	 '__format__',
	 '__ge__',
	 '__get__',
	 '__getattribute__',
	 '__globals__',
	 '__gt__',
	 '__hash__',
	 '__init__',
	 '__init_subclass__',
	 '__kwdefaults__',
	 '__le__',
	 '__lt__',
	 '__module__',
	 '__name__',
	 '__ne__',
	 '__new__',
	 '__qualname__',
	 '__reduce__',
	 '__reduce_ex__',
	 '__repr__',
	 '__setattr__',
	 '__sizeof__',
	 '__str__',
	 '__subclasshook__']
	help(torch.cuda.is_available)
	Help on function is_available in module torch.cuda:
	is_available() -> bool
	    Returns a bool indicating if CUDA is currently available.

可以观察到不同的输出。
__init__双下划线表示约定好不可修改的函数。

1.2 help()函数

函数功能:输出函数的功能细节。
在pycharm 的python console中输入:

In[5]: help(torch.cuda.is_available)
Out[5]:
	Help on function is_available in module torch.cuda:
	is_available() -> bool
	    Returns a bool indicating if CUDA is currently available.

2 输出Hello world

2.1 pycharm新建文件

新建.py文件,输入:print("hello world")。右键运行。
在这里插入图片描述

2.2 Python Console

输入:print("hello world"),回车。
在这里插入图片描述

2.3 jupyter

打开Conda Prompt,输入:

(base) C:\Users\win10>conda activate pytorch

(pytorch) C:\Users\win10>jupyter notebook

打开jupyter,输入:print("hello world"),点击运行,或者使用快捷键:Shift+回车。
在这里插入图片描述

2.4 三者的区别

1、python文件以整个文件(所有行)为块,每次都是从头执行。优点:通用,传播方便,适用于大型项目。缺点:只能从头运行。
2、python Console以单独的行为块,从新执行会从错误处开始。优点:显示每个变量的值,调试功能。缺点:不利于代码阅读及修改。
3、jupyter以任意行为块运行的,运行到错误的地方之前都是一整块,错误改正之后,也是一整块运行。优点:利于代码阅读和修改。缺点:环境需要配置。

3 PyTorch加载数据

3.1 Dataset类

作用:提供一种方式去获取数据及其label。
(1)如何获取每一个数据以及label。
(2)告诉我们总共有多少的数据。

3.2 Dataloader

作用:为网络提供不同的数据形式。

3.3 下载数据集

区别蚂蚁和蜜蜂的图像,下载链接:https://download.pytorch.org/tutorial/hymenoptera_data.zip

文件结构:
- dataset
		- train
				- ants
				- bees
		- val
				- ants
				- bees

需要修改文件结构:

新文件结构:
- dataset_ants_bees
		- train
				- ants_image(ants修改)
				- ants_label(新建)
				- bees_image(bees修改)
				- bees_image(新建)
		- val
				- ants
				- bees

3.4 使用Dataset类

jupyter输入。

from torch.utils.data import Dataset
help(Dataset)
Help on class Dataset in module torch.utils.data.dataset:

class Dataset(typing.Generic)
 |  An abstract class representing a :class:`Dataset`.
 |  
 |  All datasets that represent a map from keys to data samples should subclass
 |  it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
 |  data sample for a given key. Subclasses could also optionally overwrite
 |  :meth:`__len__`, which is expected to return the size of the dataset by many
 |  :class:`~torch.utils.data.Sampler` implementations and the default options
 |  of :class:`~torch.utils.data.DataLoader`.
 |  
 |  .. note::
 |    :class:`~torch.utils.data.DataLoader` by default constructs a index
 |    sampler that yields integral indices.  To make it work with a map-style
 |    dataset with non-integral indices/keys, a custom sampler must be provided.
 |  
 |  Method resolution order:
 |      Dataset
 |      typing.Generic
 |      builtins.object
 |  
 |  Methods defined here:
 |  
 |  __add__(self, other: 'Dataset[T_co]') -> 'ConcatDataset[T_co]'
 |  
 |  __getitem__(self, index) -> +T_co
 |  
 |  ----------------------------------------------------------------------
 |  Data descriptors defined here:
 |  
 |  __dict__
 |      dictionary for instance variables (if defined)
 |  
 |  __weakref__
 |      list of weak references to the object (if defined)
 |  
 |  ----------------------------------------------------------------------
 |  Data and other attributes defined here:
 |  
 |  __orig_bases__ = (typing.Generic[+T_co],)
 |  
 |  __parameters__ = (+T_co,)
 |  
 |  ----------------------------------------------------------------------
 |  Class methods inherited from typing.Generic:
 |  
 |  __class_getitem__(params) from builtins.type
 |  
 |  __init_subclass__(*args, **kwargs) from builtins.type
 |      This method is called when a class is subclassed.
 |      
 |      The default implementation does nothing. It may be
 |      overridden to extend subclasses.

3.5 读取数据集并显示图像

编写python脚本,定义MyData类继承于DataSet类,定义__init____getitem____len__函数,并调用函数,显示图像。

from torch.utils.data import Dataset
from PIL import Image
import os

class MyData(Dataset):

    def __init__(self,root_dir,label_dir):
        self.root_dir = root_dir                    # 根目录路径
        self.label_dir = label_dir                  # 标签目录路径
        self.path = os.path.join(self.root_dir, self.label_dir)      # 合成成总路径
        print("path: ", self.path)
        self.img_path = os.listdir(self.path)       # 获取所有图片的地址
        print("img_path: ", self.img_path)

    def __getitem__(self, idx):
        img_name = self.img_path[idx]
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
        label = self.label_dir
        img = Image.open(img_item_path)
        return img, label

    def __len__(self):
        return len(self.img_path)

root_dir = "G:\\Anaconda\\pycharm_pytorch\\learning_project\\dataset_ants_bees\\train"
# 蚂蚁数据集
ants_label_dir = "ants_image"
ants_dataset = MyData(root_dir, ants_label_dir)
img_ants, label_ants = ants_dataset[0]
img_ants.show()

# 蜜蜂数据集
bees_label_dir = "bees_image"
bees_dataset = MyData(root_dir, bees_label_dir)
img_bees, label_bees = bees_dataset[0]
img_bees.show()

# 合并数据集
train_dataset = ants_dataset + bees_dataset
len(train_dataset)
len(ants_dataset)
len(bees_dataset)

img_train, label = train_dataset[200]
img_train.show()

在这里插入图片描述

3.6 添加标签

因为之前下载的数据集只有图像,没有每个图像对应的标签,因此自己写一个自动生成标签的python脚本:

# 程序功能:生成train文件夹下XXXX_label文件夹下的.txt文件和其标签内容,对应于XXXX_image文件夹下的图片名称
import os

root_dir = "G:\\Anaconda\\pycharm_pytorch\\learning_project\\dataset_ants_bees\\train"
image_dir = ["bees_image", "ants_image"]     # 标签目录路径
label_dir = ["bees_label", "ants_label"]     # 标签目录路径
label = ["bee","ant"]

for i in range(2):
    path_image = os.path.join(root_dir, image_dir[i])      # 合成图像总路径
    path_label = os.path.join(root_dir, label_dir[i])      # 合成标签总路径

    img_path = os.listdir(path_image)       # 获取所有图片的地址

    for idx in range(len(img_path)):
        file_name = img_path[idx][:-4] + ".txt"
        file_path = os.path.join(path_label, file_name)
        print(file_path)
        file = open(file_path, "w", encoding='utf-8')
        file.write(label[i])
        file.close()
Logo

更多推荐