Qwen模型LoRA微调后的两种启动方式
本文记录了Qwen模型LoRA微调后的两种启动方式。
·
本文记录了在使用LoRA微调后的Qwen模型时的两种启动方式,一种是原始模型+LoRA模型,一种是将两个模型合并保存后再调用的方式。
LoRA模型的启动方式
LoRA模型可以通过peft包中的AutoPeftModelForCausalLM进行加载:
from peft import AutoPeftModelForCausalLM
# 设置LoRA微调后的模型存储路径(checkpoint)
model = AutoPeftModelForCausalLM.from_pretrained("/home/<用户名>/nlp/Qwen/finetune/output_qwen_medical/checkpoint-1000/", device_map='auto',trust_remote_code=True).eval()
LoRA模型加载完毕还是需要transformers里面的AutoTokenizer:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("/home/<用户名>/nlp/Qwen/model/qwen/Qwen-1_8B-Chat", trust_remote_code=True)
然后再调model的chat方法即可:
# 第一轮对话
response, history = model.chat(tokenizer, "....", history =None)
print(response)
以合并LoRA模型与原始模型的参数方式加载
保存模型参数:
# 可以将LoRA参数与原始参数合并加载
from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained(
"/home/renjintao/nlp/Qwen/finetune/output_qwen_medical/checkpoint-1000/",
device_map="auto",
trust_remote_code=True
).eval()
merged_model = model.merge_and_unload()
# 保存合并模型
merged_model.save_pretrained("/home/renjintao/nlp/Qwen/model/qwen/qwen_1_8B_lora_medical")
保存tokenizer相关的配置:
# 还需要保存tokenizer相关的配置
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"/home/renjintao/nlp/Qwen/finetune/output_qwen_medical/checkpoint-1000/",
trust_remote_code=True
)
tokenizer.save_pretrained("/home/renjintao/nlp/Qwen/model/qwen/qwen_1_8B_lora_medical")
以常规方式调用模型:
# 接下来就可以使用常规方式进行调用
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
model_path = './model/qwen/qwen_1_8B_lora_medical'
tokenizer=AutoTokenizer.from_pretrained(model_path,trust_remote_code=True)
model=AutoModelForCausalLM.from_pretrained(model_path,device_map="auto",trust_remote_code=True)
model.generation_config = GenerationConfig.from_pretrained(model_path,trust_remote_code=True)
对话试试:
query = '今天有点流脓应该是正常情况吧?我涂了碘酊应该没问题吧?'
response, history = model.chat(tokenizer, query, history=None,)
print(response)
已经成功启动微调后的模型:
更多推荐
已为社区贡献2条内容
所有评论(0)