大模型适配器微调(Adapter-tuning)的思路
适配器微调(Adapter-tuning)是一种用于微调预训练模型的方法,其思路可以概括如下:适配器微调的思路是在预训练模型中添加适配器层,并只微调适配器层的参数,从而保留预训练模型的知识、减少计算量和时间,并提高模型的可解释性和可复用性。冻结其他层:在适配器微调中,通常会冻结预训练模型的其他层,只微调适配器层的参数。学习率调整:在微调过程中,可以使用较小的学习率来微调适配器层的参数,以避免过大的
适配器微调(Adapter-tuning)是一种用于微调预训练模型的方法,其思路可以概括如下:适配器微调的思路是在预训练模型中添加适配器层,并只微调适配器层的参数,从而保留预训练模型的知识、减少计算量和时间,并提高模型的可解释性和可复用性。这种方法在许多自然语言处理和计算机视觉任务中都取得了良好的效果。
预训练模型选择:首先,选择一个适合任务的预训练模型,例如BERT、GPT等。这些预训练模型在大规模数据上进行了训练,具有较强的语义表示能力。
适配器层添加:在选择的预训练模型中,为目标任务添加适配器层。适配器层是一个小型的任务特定层,通常由一个或多个全连接层组成。适配器层的目的是将预训练模型的表示转换为适合目标任务的表示。
冻结其他层:在适配器微调中,通常会冻结预训练模型的其他层,只微调适配器层的参数。这是因为预训练模型已经在大规模数据上进行了训练,其低层特征提取层已经具有较好的特征表示能力,不需要进行大幅度的更新。
学习率调整:在微调过程中,可以使用较小的学习率来微调适配器层的参数,以避免过大的参数更新。同时,可以使用较大的学习率来微调预训练模型的其他层,以更快地调整特征表示。
数据增强和训练:为了增加训练数据的多样性,可以使用各种数据增强技术,例如随机裁剪、翻转和旋转等。然后,使用目标任务的标注数据对适配器层进行训练。
验证和调优:在微调过程中,可以使用验证集来监测模型的性能,并根据性能表现进行调优。可以根据验证集上的性能选择最佳的模型参数和超参数。
AI科技智库👉️👉️👉️www.aigchouse.com,一站式AI工具、资料、课程资源学习平台,每日持续更新。通过分享最新AI工具、AI资源等,帮助更多人了解使用AI,提升工作和学习效率。这里有海量AI工具整合包、AI学习资料、AI免费课程和AI咨询服务,AI之路不迷路,2024我们一起变强。
更多推荐
所有评论(0)