【关于 ChatGLM 微调】那些你不知道的事
本教程主要介绍对于 ChatGLM-6B 模型基于的微调。P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。本节 以数据集为例介绍代码的使用方法。硬件需求。
【关于 ChatGLM 微调】那些你不知道的事
一、介绍
本教程主要介绍对于 ChatGLM-6B 模型基于 P-Tuning v2 的微调。P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,最低只需要 7GB 显存即可运行。
本节 以 ADGEN (广告生成) 数据集为例介绍代码的使用方法。
硬件需求
量化等级 | 最低 GPU 显存(推理) | 最低 GPU 显存(高效参数微调) |
---|---|---|
FP16(无量化) | 13 GB | 14 GB |
INT8 | 8 GB | 9 GB |
INT4 | 6 GB | 7 GB |
二、环境搭建
2.1 构建环境
s代码解读复制代码 $ conda create -n py310_chat python=3.10 # 创建新环境
$ source activate py310_chat # 激活环境
2.2 下载代码
s代码解读复制代码 $ git clone https://github.com/THUDM/ChatGLM-6B.git
$ cd ChatGLM-6B
2.3 安装依赖
运行微调需要4.27.1版本的transformers。除 ChatGLM-6B 的依赖之外,还需要按照以下依赖
s代码解读复制代码 $ pip install -r requirements.txt
$ pip install rouge_chinese nltk jieba datasets
三、使用方法
3.1 训练数据下载
ADGEN 数据集任务为根据输入(content)生成一段广告词(summary)。
s代码解读复制代码{
"content": "类型#上衣*版型#宽松*版型#显瘦*图案#线条*衣样式#衬衫*衣袖型#泡泡袖*衣款式#抽绳",
"summary": "这件衬衫的款式非常的宽松,利落的线条可以很好的隐藏身材上的小缺点,穿在身上有着很好的显瘦效果。领口装饰了一个可爱的抽绳,漂亮的绳结展现出了十足的个性,配合时尚的泡泡袖型,尽显女性甜美可爱的气息。"
}
从 Google Drive 或者 Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 ptuning/AdvertiseGen 目录放到本目录下。
3.2 模型下载
s代码解读复制代码 $ git lfs install
$ git clone https://huggingface.co/THUDM/chatglm-6b
3.3 模型训练
运行以下指令进行训练:
s代码解读复制代码 $ cd ptuning/
$ bash train.sh
注 train.sh 脚本如下
s代码解读复制代码PRE_SEQ_LEN=8 # soft prompt 长度
LR=1e-2 # 训练的学习率
CUDA_VISIBLE_DEVICES=0 python main.py \
--do_train \ # 训练
--train_file AdvertiseGen/train.json \ # 训练集地址
--validation_file AdvertiseGen/dev.json \ # 验证集地址
--prompt_column content \ # 训练集中prompt 的key名称【可以理解为输入值的key】
--response_column summary \ # 训练集中response的key名称【可以理解为生成值的key】
--overwrite_cache \ # 是否覆盖 缓存
--model_name_or_path THUDM/chatglm-6b \ # chatglm-6b 模型地址
--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \ # 模型保存地址
--overwrite_output_dir \
--max_source_length 64 \
--max_target_length 64 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--predict_with_generate \
--max_steps 3000 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4 # 模型 量化方式
train.sh 中的 PRE_SEQ_LEN 和 LR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来被原始模型的量化等级,不加此选项则为 FP16 精度加载。
在默认配置 quantization_bit=4、per_device_train_batch_size=1、gradient_accumulation_steps=16 下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size 的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。
PRE_SEQ_LEN调整为512(2080ti使用情况如下):
3.4 模型推理
将 evaluate.sh 中的 CHECKPOINT 更改为训练时保存的 checkpoint 名称,运行以下指令进行模型推理和评测:
s
代码解读
复制代码 $ bash evaluate.sh
注 evaluate.sh 脚本如下
s代码解读复制代码PRE_SEQ_LEN=8
CHECKPOINT=adgen-chatglm-6b-pt-8-1e-2
STEP=3000
CUDA_VISIBLE_DEVICES=0 python3 main.py \
--do_predict \
--validation_file AdvertiseGen/dev.json \
--test_file AdvertiseGen/dev.json \
--overwrite_cache \
--prompt_column content \
--response_column summary \
--model_name_or_path ./output/$CHECKPOINT/checkpoint-$STEP \
--output_dir ./output/$CHECKPOINT \
--overwrite_output_dir \
--max_source_length 64 \
--max_target_length 64 \
--per_device_eval_batch_size 1 \
--predict_with_generate \
--pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4
3.5 生成结果分析
评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在 ./output/adgen-chatglm-6b-pt-8-1e-2/generated_predictions.txt。
- 示例1
s代码解读复制代码 Input: 类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞
Label: 简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。
Output[微调前]: 这件上衣的材质是牛仔布,颜色是白色,风格是简约,图案是刺绣,衣样式是外套,衣款式是破洞。
Output[微调后]: 这是一款简约的牛仔外套,破洞设计,将牛仔布破洞,带来一种随意与个性。破洞的牛仔外套,展现出时尚气息,带来一种休闲感。同时,刺绣图案,让整件外套更加立体。
- 示例2
s代码解读复制代码 Input: 类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
Label: 文艺个性的印花连衣裙,藏青色底蕴,低调又大气,撞色太阳花分布整个裙身,绚丽而美好,带来时尚减龄的气质。基础款的舒适圆领,简约不失大方,勾勒精致脸庞。领后是一粒包布扣固定,穿脱十分方便。前片立体的打褶设计,搭配后片压褶的做工,增添层次和空间感,显瘦又有型。
Output[微调前]: 类型#裙版型#显瘦风格#文艺风格#简约图案#印花图案#撞色裙下摆#压褶裙长#连衣裙裙领型#圆领 1. 连衣裙:简约风格,裙长为膝盖以上,裙领型为圆领。2. 裙下摆:压褶设计,使裙摆呈现出流畅的褶皱效果。3. 裙领型:裙领型为圆领,使穿上连衣裙后更加有型。4. 版型:采用显瘦设计,让连衣裙看起来更加苗条。5. 风格:文艺风格,让连衣裙更加有内涵和品味。6. 图案:印花设计,在连衣裙上印有独特的图案。7. 撞色:采用撞色设计,让连衣裙在色彩上更加鲜明、富有层次感。
Output[微调后]: 这是一款文艺范的连衣裙,以印花为元素,采用简约的印花,既能够突出文艺气质,又能够展现简约风。在印花的同时又有领子和裙摆的压褶设计,更加凸显文艺气质。简约而不会过于单调,搭配出街,穿着十分舒适。
3.6 模型部署
将对应的demo或代码中的THUDM/chatglm-6b换成经过 P-Tuning 微调之后 checkpoint 的地址(在示例中为 ./output/adgen-chatglm-6b-pt-8-1e-2/checkpoint-3000)。注意,目前的微调还不支持多轮数据,所以只有对话第一轮的回复是经过微调的。
四、友情链接
以下是部分基于本仓库开发的开源项目:
- SwissArmyTransformer: 一个Transformer统一编程框架,ChatGLM-6B已经在SAT中进行实现并可以进行P-tuning微调。
- ChatGLM-MNN: 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU
- ChatGLM-Tuning: 基于 LoRA 对 ChatGLM-6B 进行微调。类似的项目还包括 Humanable ChatGLM/GPT Fine-tuning | ChatGLM 微调
- langchain-ChatGLM:基于本地知识的 ChatGLM 应用,基于LangChain
- bibliothecarius:快速构建服务以集成您的本地数据和AI模型,支持ChatGLM等本地化模型接入。
- 闻达:大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能
- JittorLLMs:最低3G显存或者没有显卡都可运行 ChatGLM-6B FP16, 支持Linux、windows、Mac部署
以下是部分针对本项目的教程/文档:
五、to do
- ChatGLM-6b 特定任务微调实验:本章主要介绍的是 官方 提供的 ChatGLM-6b 在 ADGEN (广告生成) 数据集 上 进行微调;
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
更多推荐
所有评论(0)